6 resultados para Genetic and epigenetic alterations

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Head and Neck Cancers (HNC) are a group of tumours located in the upper aero-digestive tract. Head and Neck Squamous Cell Carcinoma (HNSCC) represent about 90% of all HNC cases. It has been considered the sixth most malignant tumour worldwide and, despite clinical and technological advances, the five-year survival rate has not improved much in the last years. Nowadays, HNSCC is well established as a heterogeneous disease and that its development is due to accumulation of genetic events. Apart from the majority of the patients being diagnosed in an advanced stage, HNSCC is also a disease with poor therapeutic outcome. One of the therapeutic approaches is radiotherapy. However, this approach has different drawbacks like the radioresistance acquired by some tumour cells, leading to a worse prognosis. A major knowledge in radiation biology is imperative to improve this type of treatment and avoid late toxicities, maintaining patient quality of life in the subsequent years after treatment. Then, identification of genetic markers associated to radiotherapy response in patients and possible alterations in cells after radiotherapy are essential steps towards an improved diagnosis, higher survival rate and a better life quality. Not much is known about the radiation effects on cells, so, the principal aim of this study was to contribute to a more extensive knowledge about radiation treatment in HNSCC. For this, two commercial cell lines, HSC-3 and BICR-10, were used and characterized resorting to karyotyping, aCGH and MS-MLPA. These cell lines were submitted to different doses of irradiation and the resulting genetic and methylation alterations were evaluated. Our results showed a great difference in radiation response between the two cell lines, allowing the conclusion that HSC-3 was much more radiosensitive than BICR-10. Bearing this in mind, analysis of cell death, cell cycle and DNA damages was performed to try to elucidate the motifs behind this difference. The characterization of both cell lines allowed the confirmation that HSC-3 was derived from a metastatic tumour and the hypothesis that BICR-10 was derived from a dysplasia. Furthermore, this pilot study enabled the suggestion of some genetic and epigenetic alterations that cells suffer after radiation treatment. Additionally, it also allowed the association of some genetic characteristics that could be related to the differences in radiation response observable in this two cell lines. Taken together all of our results contribute to a better understanding of radiation effects on HNSCC allowing one further step towards the prediction of patients’ outcome, better choice of treatment approaches and ultimately a better quality of life.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The global aim of this thesis was to evaluate and assess the effects of a pesticide (dimethoate) and a metal (nickel), as model chemicals, within different organization levels, starting at the detoxification pathways (enzymatic biomarkers) and energy costs associated (energy content quantification, energy consumption and CEA) along with the physiological alterations at the individual and population level (mortality), leading to a metabolomic analysis (using liquid 1H-NMR) and finally a gene expression analysis (transcriptome and RT-qPCR analysis). To better understand potential variations in response to stressors, abiotic factors were also assessed in terrestrial isopods such as temperature, soil moisture and UV radiation. The evaluation performed using biochemical biomarkers and energy related parameters showed that increases in temperature might negatively affect the organisms by generating oxidative stress. It also showed that this species is acclimated to environments with low soil moisture, and that in high moisture scenarios there was a short gap between the optimal and adverse conditions that led to increased mortality. As for UV-R, doses nowadays present have shown to induce significant negative impact on these organisms. The long-term exposure to dimethoate showed that besides the neurotoxicity resulting from acetylcholinesterase inhibition, this stressor also caused oxidative stress. This effect was observed for both concentrations used (recommended field dose application and a below EC50 value) and that its combination with different temperatures (20ºC and 25ºC) showed different response patterns. It was also observed that dimethoate’s degradation rate in soils was higher in the presence of isopods. In a similar study performed with nickel, oxidative stress was also observed. But, in the case of this stressor exposure, organisms showed a strategy where the energetic costs necessary for detoxification (biomarkers) seemed to be compensated by positive alterations in the energy related parameters. In this work we presented for the first time a metabolomic profile of terrestrial isopods exposed to stressors (dimethoate and niquel), since until the moment only a previous study was performed on a metabolomic evaluation in nonexposed isopods. In the first part of the study we identify 24 new metabolites that had not been described previously. On the second part of the study a metabolomic profile variation of abstract non-exposed organism throughout the exposure was presented and finally the metabolomic profile of organisms exposed to dimethoate and nickel. The exposure to nickel suggested alteration in growth, moult, haemocyanin and glutathione synthesis, energy pathways and in osmoregulation. As for the exposure to dimethoate alterations in osmoregulation, energy pathways, moult and neurotransmission were also suggested. In this work it was also presented the first full body transcriptome of a terrestrial isopod from the species Porcellionides pruinosus, which will complement the scarce information available for this group of organisms. This transcriptome also served as base for a RNA-Seq and a RT-qPCR analysis. The results of the RNA-Seq analysis performed in organisms exposed to nickel showed that this stressor negatively impacted at the genetic and epigenetic levels, in the trafficking, storage and elimination of metals, generates oxidative stress, inducing neurotoxicity and also affecting reproduction. These results were confirmed through RT-qPCR. As for the impact of dimethoate on these organisms it was only accessed through RT-qPCR and showed oxidative stress, an impact in neurotransmission, in epigenetic markers, DNA repair and cell cycle impairment. This study allowed the design of an Adverse Outcome Pathway draft that can be used further on for legislative purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The genetic code establishes the rules that govern gene translation into proteins. It was established more than 3.5 billion years ago and it is one of the most conserved features of life. Despite this, several alterations to the standard genetic code have been discovered in both prokaryotes and eukaryotes, namely in the fungal CTG clade where a unique seryl transfer RNA (tRNACAG Ser) decodes leucine CUG codons as serine. This tRNACAG Ser appeared 272±25 million years ago through insertion of an adenosine in the middle position of the anticodon of a tRNACGA Ser gene, which changed its anticodon from 5´-CGA-3´ to 5´-CAG-3´. This most dramatic genetic event restructured the proteome of the CTG clade species, but it is not yet clear how and why such deleterious genetic event was selected and became fixed in those fungal genomes. In this study we have attempted to shed new light on the evolution of this fungal genetic code alteration by reconstructing its evolutionary pathway in vivo in the yeast Saccharomyces cerevisiae. For this, we have expressed wild type and mutant versions of the C. albicans tRNACGA Ser gene into S. cerevisiae and evaluated the impact of the mutant tRNACGA Ser on fitness, tRNA stability, translation efficiency and aminoacylation kinetics. Our data demonstrate that these mutants are expressed and misincorporate Ser at CUGs, but their expression is repressed through an unknown molecular mechanism. We further demonstrate, using in vivo forced evolution methodologies, that the tRNACAG Ser can be easily inactivated through natural mutations that prevent its recognition by the seryl-tRNA synthetase. The overall data show that repression of expression of the mistranslating tRNACAG Ser played a critical role on the evolution of CUG reassignment from Leu to Ser. In order to better understand the evolution of natural genetic code alterations, we have also engineered partial reassignment of various codons in yeast. The data confirmed that genetic code ambiguity affects fitness, induces protein aggregation, interferes with the cell cycle and results in nuclear and morphologic alterations, genome instability and gene expression deregulation. Interestingly, it also generates phenotypic variability and phenotypes that confer growth advantages in certain environmental conditions. This study provides strong evidence for direct and critical roles of the environment on the evolution of genetic code alterations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The genetic code is not universal. Alterations to its standard form have been discovered in both prokaryotes and eukaryotes and demolished the dogma of an immutable code. For instance, several Candida species translate the standard leucine CUG codon as serine. In the case of the human pathogen Candida albicans, a serine tRNA (tRNACAGSer) incorporates in vivo 97% of serine and 3% of leucine in proteins at CUG sites. Such ambiguity is flexible and the level of leucine incorporation increases significantly in response to environmental stress. To elucidate the function of such ambiguity and clarify whether the identity of the CUG codon could be reverted from serine back to leucine, we have developed a forced evolution strategy to increase leucine incorporation at CUGs and a fluorescent reporter system to monitor such incorporation in vivo. Leucine misincorporation increased from 3% up to nearly 100%, reverting CUG identity from serine back to leucine. Growth assays showed that increasing leucine incorporation produced impressive arrays of phenotypes of high adaptive potential. In particular, strains with high levels of leucine misincorporation exhibited novel phenotypes and high level of tolerance to antifungals. Whole genome re-sequencing revealed that increasing levels of leucine incorporation were associated with accumulation of single nucleotide polymorphisms (SNPs) and loss of heterozygozity (LOH) in the higher misincorporating strains. SNPs accumulated preferentially in genes involved in cell adhesion, filamentous growth and biofilm formation, indicating that C. albicans uses its natural CUG ambiguity to increase genetic diversity in pathogenesis and drug resistance related processes. The overall data provided evidence for unantecipated flexibility of the C. albicans genetic code and highlighted new roles of codon ambiguity on the evolution of genetic and phenotypic diversity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O cancro é um dos maiores causadores globais de mortalidade e morbilidade, ocorrendo cerca de 14 milhões de novos casos por ano e 8,2 milhões de mortes anuais com esta patologia, números que tendem a aumentar 70% nas próximas duas décadas. A característica tumoral mais nefasta é a sua capacidade de metastização para outros órgãos, um mecanismo que pode ser despoletado pela falha dos mecanismos normais de controlo de crescimento, proliferação e reparação celulares, que facilita o processo de transformação de células normais em células cancerígenas. A oncogénese processa-se em três etapas, a iniciação, a promoção e a progressão e pode ter origem em células estaminais cancerígenas, que regulam as capacidades de propagação e recidiva do tumor. As neoplasias hematológicas resultam de alterações genéticas e /ou epigenéticas que conduzem à desregulação da proliferação, ao bloqueio da diferenciação e/ou à resitência à apoptose. Para além dos fatores de risco exógenos, como agentes carcinogénicos físicos, químicos e biológicos, existem também fatores endógenos, incluindo características genéticas, que podem alterar a predisposição para o aparecimento de neoplasias, bem como influenciar a resposta à terapêutica. Uma das terapêuticas aplicadas no tratamento do cancro é a quimioterapia. Os fármacos administrados a doentes oncológicos seguem normalmente o percurso de absorção, distribuição, metabolização e eliminação. Este curso pode sofrer alterações caso as proteínas transportadoras e metabolizadoras necessárias não atuem corretamente. Para um melhor conhecimento da influência das alterações provocadas por variações nos genes que codificam proteínas transportadoras de efluxo (MDR1, MRP1), proteínas de influxo (OCTN2) e proteínas metabolizadoras (UCK2), o objetivo deste trabalho consistiu na avaliação de polimorfismos nos genes MDR1, MRP1, OCTN2 e UCK2 e da sua relação com a predisposição para o desenvolvimento de neoplasias hematológicas. Para isto, foram utilizadas amostras de 307 doentes com neoplasias hematológicas, 83 de Síndrome Mielodisplásica (SMD), 63 Leucemia Mieloide Aguda (LMA), 16 de Síndrome Mielodisplásica/Neoplasias Mieloproliferativas (SMD/NMP), 77 de Mieloma Múltiplo (MM) e 68 de Gamapatia Monoclonal de Significado Indeterminado (MGUS) e 164 de controlos não neoplásicos e/ou indivíduos saudáveis. As amostras de ADN foram extraídas do sangue periférico com protocolo adequado. De forma a determinar os genótipos correspondentes a cada amostra, realizaram-se técnicas de RFLP-PCR e ARMS-PCR. Posteriormente, calcularam-se estatisticamente as frequências alélicas e genotípicas relativas às variantes polimórficas dos genes MDR1, MRP1, OCTN2 e UCK2 e verificou-se se estavam em Equilíbrio de Hardy-Weinberg. De seguida, avaliou-se a força de associação entre as formas polimórficas e o risco de desenvolvimento de neoplasias hematológicas, através do cálculo do risco relativo por análise de regressão logística. Avaliaram-se ainda os perfis genéticos e a possível relação com o desenvolvimento e progressão da neoplasia com recurso a regressão logística e análise de Kaplan-Meier. De um modo geral as frequências alélicas e genotípicas não se revelaram alteradas comparativamente ao esperado. A análise do odds ratio associado ao polimorfismo rs1045642 do gene MDR1 revelou que o genótipo CT pode constituir um fator de risco aumentado de 1,84x para o desenvolvimento de Gamapatias Monoclonais e 2,27x para o desenvolvimento de Mieloma Múltiplo. Por outro lado, a presença de genótipos portadores do alelo T têm um efeito protetor no desenvolvimento de MM (OR=0,41). O cálculo do risco associado ao polimorfismo rs4148330 do gene MRP1 revela que o genótipo AG é um fator protetor (OR=0,50) para o desenvolvimento de LMA, assim como o alelo G (OR=0,50). Além disso, verificámos que existe uma associação de risco de desenvolver neoplasia com o polimorfismo rs2185268 do gene UCK2. De facto, a presença dos genótipos CC e AC representam um fator de risco 4,59x aumentado para o desenvolvimento de SMD/NMP. O polimorfismo rs274561 do gene OCTN2 não apresenta relação com o risco relativo de desenvolvimento neoplásico. Da avaliação da influência dos polimorfismos em estudo na sobrevivência global dos doentes, podemos assumir que a presença do genótipo GG relativo ao polimorfismo rs2185268 do gene UCK2 representa uma diminuição da sobrevivência em 11 meses. Os resultados obtidos a partir do nosso estudo permitem-nos concluir que os polimorfismos podem ser fatores relevantes na predisposição para o desenvolvimento de neoplasias hematológicas e na progressão destas doenças.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Colorectal cancer (CRC) results from histologic and gene alterations can lead to a massive cellular proliferation. Most of the authors assume multifactorial causes to CRC genesis. Low physical activity, a fat diet poor in fibers and smoking habits seems to have an important role in CRC. However, there are also genetic causes associated with CRC risk. It has been described that oxidative stress levels could influence CRC development. Thus, cellular balance reactive species and defense enzymes involved in oxidative stress are crucial to maintain a good tissue function and avoid neoplasic process. Therefore, genome variations on these defense enzymes, such as MNSOD, SOD3, GSTP1, GSTT1 and GSTM1, could be important biomarkers to colorectal adenocarcinomas. We intend to determine frequencies distribution of most common polymorphisms involved on oxidative stress regulation (MNSOD, SOD3, GSTP1, GSTT1 and GSTM1) in patients with sporadic colorectal adenocarcinoma (SCA) and in healthy controls, evaluation their possible correlation with SCA risk. Samples common polymorphisms of antioxidant and detoxify genes (MNSOD T175C, SOD3 R213G, GSTP1 A105G, GSTP1 C114T, GSTT1del and GSTM1del) analysis was done by PCR-SSP techniques. In this study we found a higher prevalence of MNSOD 175CC (55% vs 2%; p<0.0001; OR: 58.5; CI 13.3 to 256.7), SOD3 213GG (31% vs 2%; p<0.0001; OR: 21.89; CI 4.93 to 97.29), GSTP1 105GG (46% vs 12%; p<0.0001; OR: 6.14; CI 2.85 to 13.26), GSTP1 114TT (38% vs 0%; p<0.0001; OR: Infinity) and GSTT1 null (75% vs 28%; p<0.0001; OR: 7.71; CI 3.83 to 15.56) mutated genotypes among SCA patients, while the normal genotypes were associated with SCA absence. Furthermore, we found GSTP1 114TT mutated genotype (52% vs 27%; p=0.003; OR: 2.88; CI: 1.41 to 5.89) and GSTT1 null genotype (87% vs 65%; p=0.003; OR: 3.66; CI 1.51 to 8.84) associated with colon samples. These findings suggest a positive association between most of common polymorphisms involved on oxidative stress regulation and SCA prevalence. Dysregulation of MNSOD, SOD3, GSTP1, GSTT1 and GSTM1 genes could be associated with an increase of ROS in colon and rectum tissue and p53 pathway deregulation, induced by oxidative stress on colonic and rectal cells. The present study also provides preliminary evidence that MNSOD 175C, SOD3 213G, GSTP1 105G, GSTP1 114T and GSTT1 null polymorphisms, may be involved in SCA risk and could be useful to clarify this multifactorial disorder.